
2017-09-19

Introduction to the
Extreme HPC Resource

Advanced Cyberinfrastructure for Education and Research

Expedite scientific innovation and discovery by providing data
infrastructure to the UIC research community

1

2017-09-19

Outline
• Extreme Architecture & Topology
• Requesting an Extreme Account
• Accessing the Cluster via SSH & SCP
• Basic Linux Commands
• Using Cluster Storage
• Resource & Scheduler Concepts
• Job Submission
• Creating a Submit Script
• Monitoring Jobs
• MPI Program Example
• ACER Staff

2

2017-09-19

Extreme Architecture & Topology
• High Performance Computing (HPC) Cluster

• Dell manufactured
• Intel x86_64 architecture
• Compute & high memory nodes (×203)

• compute-g1 (×160) : 2×8-core 2.6 GHz Intel Xeon E5-2670, 128 GB RAM
• compute-g2 (×40) : 2×10-core 2.5 GHz Intel Xeon E5-2670 v2 , 128 GB RAM
• highmem-g1 (×3) : 4×8-core 2.60 GHz Intel Xeon E5-4650L, 1 TB RAM

• Head nodes (×3)
• login (×2), admin : 2×8-core 2.6 GHz Intel Xeon E5-2670, 32 GB RAM

• High Speed Network (HSN)
• Infiniband QDR fabric (40 Gb/s)
• Fat tree topology with approximately 1:1 blocking factor

3

2017-09-19

Extreme Architecture & Topology
• Storage

• Persistent NFS with High Availability (NFS-HA)
• General purpose storage
• 3× filesystems, each with 262 TB capacity (formatted)
• Each filesystem has an active/standby pair of server nodes
• Mounted on /mnt/store1, /mnt/store2, /mnt/store3

• Intel Enterprise Edition for Lustre
• High performance Lustre filesystem
• 175 TB capacity (formatted)
• Nodes: 1× management, 2× Object Storage Server (OSS), 2× Metadata Server

(MDS)
• Mounted on /mnt/lustre

4

2017-09-19

Extreme Architecture & Topology

5

compute-g1
(×160)

login (×2)admin (×1) highmem (×3)

nfs (×6)lustre (×5)

/mnt/lustre /mnt/store{1..3}

.local

1GbE admin IB QDR HSN

.ibnet

10GbE campus

.extreme.acer
.uic.edu

compute-g2
(×40)

40GbE research

Internet2

Internet

2017-09-19

Requesting an Extreme Account
• Research faculty, staff, etc.

• Verify allocated resources exist with PI or equivalent
• Visit https://acer.uic.edu/computing-resources/big-data/request-

access/
• Select “Extreme/Condo Cluster” and complete form

• Student accounts
• Sponsored by professor/instructor
• Account creation will be processed after add/drop deadline

6

2017-09-19

Accessing the Cluster via SSH & SCP
• Login

• Username is your UIC NetID
• Password is usual “ACCC Common Password”

• Using Secure Shell (SSH) on Mac, Linux, Unix:
• Command requires terminal application window; connect to either:

ssh netid@login-1.extreme.acer.uic.edu # or
ssh netid@login-2.extreme.acer.uic.edu

• Using SSH on Windows
• Requires third party application, such as PuTTY
• PuTTY is available for free from http://www.putty.org/

• Within PuTTY select SSH radio button under Session
• Use login-n.extreme.acer.uic.edu in Host Name field
• Will be prompted for username and password

7

2017-09-19

Accessing the Cluster via SSH & SCP
• File transfers can be done via Secure Copy (SCP), which uses the same

credentials as SSH.
• Using SCP on Mac, Linux, and Unix:

• scp -r source_path dest_path
• Use -r when recursively copying contents of a directory
• The remote path (either source or destination) is formatted as
netid@login-n.extreme.acer.uic.edu:/path

• Using SCP on Windows:
• PuTTY web site provides an analogous PSCP application which uses

similar syntax to SCP.
• pscp.exe is CLI-based; run within cmd.exe utility.

8

2017-09-19

Accessing the Cluster via SSH & SCP
Useful SSH Flags:
• To allow an X11 GUI application from within SSH:

• ssh -Y netid@login-n.extreme.acer.uic.edu
• The X11 server is already available on Linux and Unix workstations. XQuartz is freely

available for the Mac; Xming is freely available for Windows.

• Using SSH in verbose mode (helpful when debugging):
• ssh -v netid@login-n.extreme.acer.uic.edu

9

2017-09-19

Basic Linux Commands: Filesystem Navigation
• cd

• The	change	directory	command	is	used	to	navigate	the	file	system:
• cd path

• ls
• The	list	directory	command	is	used	to	gain	information	on	files	and	subdirectories	(folders)	in	a	
directory.	A	good	example	with	useful	flags:
• ls -lah
• l =	long	(detailed),	a =	all	(including	hidden	dot	files),	h =	human-readable	file	sizes

• pwd
• The	print	working	directory	command	is	used	to	determine	the	directory	in	which	you	are	currently	
located	with	respect	to	the	file	system	hierarchy.	This	command	is	useful	for	determining	where	you	are	
if	you	get	lost	navigating	the	file	system.

• mkdir
• By	default,	this	command	will	make	a	new	subdirectory	(folder)	relative	to	the	directory	in	which	you	
are	currently	located.	You	may	however	provide	an	absolute	path	to	where	you	wish	a	subdirectory	to	
be	made.
• mkdir test1 # creates test1 relative to current directory
• mkdir /export/home/netid/test2 # creates absolute path

10

2017-09-19

Basic Linux Commands: File I/O and Editing
• cat

• outputs (and concatenates) the contents of one or more files to
standard output (by default the screen)

• cat filename filename …
• grep

• Searches input globally for a regular expression and prints matching
patterns (regular expressions are special character strings using a
versatile search syntax)

• grep regex filename
• vi and nano

• text-based file editors
• vi filename —or— nano filename
• nano is more intuitive; vi is more powerful

11

2017-09-19

Basic Linux Commands: File Permissions
• chmod mode filename filename …

• changes modes of read, write, and execute file permissions, as well as other
persistent setuid and ownership settings (“sticky bit”).

• Permissions are ordered by user, group, & other user access.
• Current ownership can be determined using the long directory listing

(ls -l); e.g., -rwxr-x--- indicates the user can read, write, and execute,
the group can read and execute, and world has no access (the leading -
means no persistence flags are set).

• Mode parameters can be relatively changed m±n (where m is one or more of
u, g, or other; + to add or - to remove; and n is one or more of r, w, or x),; e.g.,
chmod ug+x filename gives the user and group execute permission.

• Mode parameters can be absolutely changed using octal-encoded values;
e.g., chmod 0750 filename specifies -rwxr-x---

• N.b.: directories must have the execute bit set to be accessible.

12

2017-09-19

Basic Linux Commands: File Ownership

• chown owner filename filename …
• Changes the user (UIC NetID) owning the specified file(s)

and/or directory(ies); wildcards such as * can be used (with
caution).

• owner can be the user only or user:group (colon-
separated).

• chgrp group filename filename …
• Changes just the group ownership of a file or a directory.
• On Extreme, the group is either “domain users” or a group

name provided by support staff.

13

2017-09-19

Basic Linux Commands: Software & Modules
• which executable

• This command shows the default path to the specified executable. Extreme provides multiple
versions of software packages through modules; the output of this command may change
depending on the module(s) loaded. When testing interactively, use this command to verify you
are running the version you want.

• module parameters …
• The module command is used to manage software packages on the cluster.

• module avail
• Lists all the software modules available on the cluster.

• module load modulename
• This command loads the software package into your path. Keep in mind you must use this

command in your submit scripts in order to call software packages.
• module list

• This command displays active modules listed in the order they were loaded.
• module unload modulename

• This command removes the specified software package from your path.

14

2017-09-19

Basic Linux Commands: MPI Modules Example
There are multiple implementations of the Message Passing Interface (MPI), a standard
parallel computing framework. The environment has to be consistent between the building
and execution of an MPI application. In this example, note how the path to mpirun (an MPI
execution harness) changes depending on the module loaded.

$ which mpirun
/opt/openmpi/bin/mpirun

$ module load compilers/intel
$ which mpirun
/export/share/compilers/intel/impi/4.1.1.036/intel64/bin/mpirun

$ module load tools/mpich-3.0.4-icc
$ which mpirun
/export/share/tools/mpich-3.0.4-icc/bin/mpirun

15

2017-09-19

Storage on the Cluster

• Home directories are on Persistent NFS Storage
/export/home/netid

• … as are lab shares; contact ACER support for further details.

• Fast temporary scratch filesystem is on Lustre
/mnt/lustre/netid

16

2017-09-19

Basic Job Scripting: Example Submit Script

#!/bin/bash
#PBS -l mem=20gb
#PBS -l walltime=20:00:00
#PBS -l nodes=1:ppn=8
#PBS -j oe
#PBS –m abe
#PBS -M email_address
#PBS -N jobname
#PBS -d /export/home/netid/work_dir

sleep 30

17

2017-09-19

Basic Job Scripting: #PBS Headers

#!/bin/bash
• Always specify the shell that the job script uses.
#PBS -l mem=20gb
• This optional line tells the cluster how much memory your job intends to

use and ensures that there is enough memory on the assigned nodes
when you submit.

#PBS -l walltime=20:00:00
• This line tells the cluster how long the job should run (HH:MM:SS).
#PBS -l nodes=1:ppn=8
• This line specifies the number of nodes (physical compute nodes) and

then the number of cores (processors) the job will need to run. The
assigned resource is a product of these values.

18

2017-09-19

Basic Job Scripting: #PBS Headers
#PBS -j oe
• Allows the user to join and otherwise manipulate the standard output and

standard error into a single file.
#PBS -m abe
• Requests a status email when a job begins, ends, or aborts.
#PBS -M email_address
• Provides an email address in conjuction with the status email flag above.
#PBS -N jobname
• Names the job with a custom label to allow a user to make it easily

identifiable in the list of jobs (e.g., provided by qstat).
#PBS -d /export/home/netid/work_dir
• Specifies the initial working directory for your job, generally where your

job’s data and/or program reside.

19

2017-09-19

Job Submission

• Submit the job using a submit script requesting one node:
qsub -l nodes=1 submit_script

• Now request all 20 cores (processors per node) on two nodes:
qsub -l nodes=2:ppn=20 submit_script

• The -l (lowercase L) precedes a comma-separated resource
list. qsub can accept multiple "-l …" argument pairs. You may
specify these parameters at the command line or in the script.

• Request an interactive job with -I (capital i):
qsub -I -l nodes=2:ppn=16

20

2017-09-19

Job Monitoring
• showq

• Displays information on all jobs that are active, queued, or blocked.
• To only display only your jobs, pipe the output through grep:

showq | grep netid
• qstat

• An alternative queue monitoring application.
• checkjob

• Good for gaining detailed information on an individual job or determine why it failed to run.
checkjob -v jobid

• Provides detailed information on the specified job and any error messages.
checkjob -v -v jobid

• Provides not only detailed information on the specified job and error messages, but displays the output of your
submitted script.

• qdel
• To use this command to cancel one of your jobs , use:

qdel jobid

21

2017-09-19

Basic Job Scripting: Invalid Resource Requests
#PBS -l mem=256gb

If you ask for a node with more than 128GB of memory the job will never run as each
node only has 128 GB of RAM.

#PBS -l walltime=720:00:00
The maximum walltime is 240 hours (or 10 days). If you submit a job with a walltime
longer than the maximum, the the job will not run.

#PBS -l nodes=1:ppn=128
The ppn value cannot exceed the per-compute core count. Extreme has 16-core
“Generation 1” and 20-core “Generation 2” compute nodes. The default batch queue
uses G1 nodes; edu_shared uses G2; users should inquire about the node generation
for other queues. A valid equivalent to a 1 × 128 configuration would be
nodes=8:ppn=16.

22

2017-09-19

MPI Sample Program on Extreme
#include <mpi.h>
#include <stdio.h>
#include <unistd.h>

int main(int argc, char **argv) {

int world_size;
int rank;
char hostname[256];
char processor_name[MPI_MAX_PROCESSOR_NAME];
int name_len;

MPI_Init(&argc, &argv); // Initialize the MPI environment
MPI_Comm_size(MPI_COMM_WORLD, &world_size); // get the total number of processes
MPI_Comm_rank(MPI_COMM_WORLD, &rank); // get the processor rank number
MPI_Get_processor_name(processor_name, &name_len); // get the processor name

gethostname(hostname, 255); // non-MPI function to get the hostname
printf("Hello world! I am process number: %d from processor %s on host %s out of %d processors\n", rank, processor_name, hostname, world_size);

MPI_Finalize();

return 0;
}

23

2017-09-19

Sample Script to Run MPI Program
#!/bin/bash
#PBS -l nodes=2:ppn=20,walltime=1:00
#PBS -N MPIsample
#PBS -q edu_shared
#PBS -m abe
#PBS -M netid@uic.edu
#PBS -e mpitest.err
#PBS -o mpitest.out
#PBS -d /export/home/netid/MPIsample

module load tools/mpich2-1.5-gcc

mpirun -machinefile $PBS_NODEFILE -np $PBS_NP ./mpitest

24

2017-09-19

Sample Script to Run MPI Program

0. Copy (Recursively) the directory containing the sample code and job script to
your home directory.

cp -R /export/share/classes/cs-ece566/MPIsample ~

1. Load MPICH2 module before compiling the program.
module load tools/mpich2-1.5-gcc

2. Compile the program
cd ~/MPIsample
mpicc -o mpitest mpitest.c

3. Modify job script email address & working directory and the job script to the
queue:

qsub mpitest.pbs

25

2017-09-19

Notes on MPI Versions

• There are different implementations of the Message Passing
Interface; Extreme has various implementation and releases:
• OpenMPI — Extreme default
• MPICH — UIC classes have frequently used MPICH2
• Intel MPI — commercial implementation with Intel x86_64

architecture optimizations
• Implementation releases (versions) are often backwards

compatible; e.g., MPICH3 mpirun can execute code compiled
with MPICH2 mpicc
• The different implementations’ tools are usually not compatible

with one another; e.g., the Intel MPI mpirun cannot execute
code compiled with OpenMPI mpicc

26

2017-09-19

About ACER

The Advanced Cyberinfrastructure for Education and Research is a division
of the Academic Computing and Communications Center at the University
of Illinois at Chicago.

ACER Staff
• Himanshu Sharma, Director of ACER
• Greg Cross, Technical Lead
• Jay Moreau, HPC Systems Administrator
• Balpreet Singh, Student Support Staff
• Sanjay Andonissamy, Student Support Staff

For more information, visit http://www.acer.uic.edu/

27

